The eigenvalues of the Hamiltonian are:
"H|\\psi\\rangle=E|\\psi\\rangle"for every eigenvector.
Write the Hamiltonian:
"H=-\\frac{\\hbar^2}{2m}\\frac{\\text{d}^2}{\\text{d}x^2}," substitute this to the first equation:
"-\\frac{\\hbar^2}{2m}\\frac{\\text{d}^2}{\\text{d}x^2}|\\psi\\rangle=E|\\psi\\rangle," the solution of this equation gives the set of eigenstates:
"|\\psi\\rangle=C\\space\\text{sin}\\Big(\\frac{\\pi n x}{a}\\Big)." The corresponding energies (eigenvalues):
"E=\\frac{n^2\\pi^2\\hbar^2}{2ma}."
Comments
Leave a comment