Kindly calculate ΔE , the q and w for the following processes of an ideal gas going from State 1 to State 2.
State 1
a) P= 2.50 atm V=8.97 L T= 273.15 K
b) P= 2.50 atm V=15.5 L T= 473.15 K
c) P= 1.45 atm V=15.5 L T= 273.15 K
State 2
a) P= 2.50 atm V=15.5 L T= 473.15 K
b) P= 1.45 atm V=15.5 L T= 273.15 K
c) P= 2.50 atm V=8.97 L T= 273.15 K
If an ideal gas is a monoatomic gas then Cv = 3/2 * R;
R = 0.082 L * atm/(K * mol);
a)
State 1: P= 2.50 atm V=8.97 L T= 273.15 K;
State 2: P= 2.50 atm V=15.5 L T= 473.15 K;
This is the isobaric process, then:
W = P * ΔV = 2.5 * (15.5 - 8.97) = 2.5 * 6.53 = 16.3;
ΔE = Cv * n * ΔT = 3/2 * 0.082 * 1 * (473.15 - 273.15) = 24.6;
Q = ΔE + W = 24.6 + 16.3 = 40.9.
b)
State 1: P= 2.50 atm V=15.5 L T= 473.15 K;
State 2: P= 1.45 atm V=15.5 L T= 273.15 K;
This is the isochoric process, then:
W = 0 (an ideal gas doesn't do any work);
ΔE = Q = Cv * n * ΔT = 3/2 * 0.082 * 1 * (273.15 - 473.15) = -24.6;
Q = ΔE = -24.6.
c)
State 1: P= 1.45 atm V=15.5 L T= 273.15 K;
State 2: c) P= 2.50 atm V=8.97 L T= 273.15 K;
This is the isothermal process, then:
W = n * R * T * ln(V2/V1) = 1 * 0.082 * 273.15 * ln(2.50/1.45) = 12.2;
ΔE = 0 (initial energy doesn't change);
Q = W = 12.2.
Comments
Leave a comment