Solution:
The profit-maximizing rule is the price of input resource must be equal to its marginal revenue product.
Q = 4K0.5L0.5
"\\frac{MP_{L} }{w} = \\frac{MP_{K} }{r} = \\frac{MP_{L} }{MP_{K}} = \\frac{w }{r}"
MPL = "\\frac{\\partial L} {\\partial Q}" = 2K0.5L-0.5
MPK = "\\frac{\\partial K} {\\partial Q}" = 2K-0.5 L0.5
"\\frac{MP_{L} }{MP_{K}} = \\frac{w }{r}"
= "\\frac{2K^{0.5} L^{0.5}}{2K^{-0.5} L^{0.5}} = \\frac{8 }{4}"
="\\frac{K }{L} = \\frac{8 }{4}"
K = 2L
Plug into isocost line:
320 = 4K + 8L
320 = 4(2L) + 8L
320 = 8L + 8L
320 = 16L
L = 20
K = 2L = 2"\\times"20 = 40
The units of L and K the firm should employ to maximize profit are = 20 and 40
Comments
Leave a comment