Let the production function of a firm is given as
π=(π₯0.5 +π¦0.5)2
Where π₯ and π¦ are inputs and π€π₯ is the price of input π₯ and π€π¦ is the price
of input π¦.
a) Assume the firm has a limited budget to spend on buying input. Find
the cost-conditional input demand function for each input.
b) Find the cost function of the firm
Solution:
a.). Derive MRTS =Β "\\frac{MP_{X} }{MP_{Y}}"
MPXΒ =Β "\\frac{\\partial Q} {\\partial X} = \\frac{1} {x^{0.5} }"
MPYΒ =Β "\\frac{\\partial Q} {\\partial Y} = \\frac{1} {y^{0.5} }"
"\\frac{MP_{X} }{MP_{Y}} = \\frac{w }{r}"
"\\frac{\\frac{1} {x^{0.5} } }{\\frac{1} {y^{0.5} } } = \\frac{w} {r }"
"\\frac{y^{0.5}} {x^{0.5} } = \\frac{w} {r }"
x =Β "\\frac{r^{2}y} {w^{2} }"
y =Β "\\frac{w^{2}x} {r^{2} }"
Β
b.). The cost function of the firm:
TC = rY + wX
TC = r("\\frac{w^{2}x} {r^{2} }") + w("\\frac{r^{2}y} {w^{2} }")
Comments
Leave a comment