given the production Q=L^1/2 K^1/2 price per unit of K and L is birr 2 and birr 4 respectively and total cost is birr 80 a) determine the maximum output subject to the cost constraint b)caculate the MRTSl,k at equilibrium point
The optimal L and K will be at the point where
"MRTS=\\dfrac{MPL}{MPK}=\\dfrac{w}{r}"
Therefore
"MPL=\\dfrac{1}{2}L^{-1\/2}K^{1\/2}\\\\[0.4cm]\nMPK=\\dfrac{1}{2}L^{1\/2}K^{-1\/2}\\\\[0.4cm]"
If "w=4 \\text{ and } r=2" , then
"\\dfrac{\\frac{1}{2}L^{-1\/2}K^{1\/2}}{\\frac{1}{2}L^{1\/2}K^{-1\/2}}=\\dfrac{4}{2}\\\\[0.4cm]\n\n\\dfrac{K}{L}=2\\\\[0.4cm]\nK=2L"
The total cost is equal to
"80=4L+2K"
Therefore
"80=4L+2(2L)\\\\[0.4cm]\n80=4L+4L\\\\[0.3cm]\n80=8L\\\\[0.3cm]\nL^*=\\boxed{10}"
The optimal capital is equal to
"K=2\\times 10\\\\[0.3cm]\nK^*=\\boxed{20}"
At the optimal L and K, the MRTS is equal to
"MRTS=\\dfrac{10}{5}\\\\[0.3cm]\nMRTS=\\boxed{2}"
Comments
Leave a comment