Surjectivity is obvious since S is the set of matrices of that special form.
Injectivity: "f(a+\\sqrt{2}b)=f(c+\\sqrt{2}d)". Hence, equating the columns of the matrices we get, "a=c,b=d." Hence injective.
Homomorphism: "f[(a+\\sqrt{2}b)+(c+\\sqrt{2}d)]=f[a+c+\\sqrt{2}(b+d)]""=\\begin{bmatrix}\n a+c & 2b+2d \\\\\n b+d & a+c\n\\end{bmatrix}." "=\\begin{bmatrix}\n a & 2b \\\\\n b & a\n\\end{bmatrix} +\\begin{bmatrix}\n c & 2d \\\\\n d & c\n\\end{bmatrix} = f(a+\\sqrt{2}b)+f(c+\\sqrt{2}d)." Also "f[(a+\\sqrt{2}b)(c+\\sqrt{2}d)]=f[ac+2bd+\\sqrt{2}(bc+ad)]" "=\\begin{bmatrix}\n ac+2bd & 2bc+2ad \\\\\n bc+ad & ac+2bd\n\\end{bmatrix}." "=\\begin{bmatrix}\n a & 2b \\\\\n b & a\n\\end{bmatrix}\\begin{bmatrix}\n c & 2d \\\\\n d & c\n\\end{bmatrix}=" "f(a+\\sqrt{2}b)f(c+\\sqrt{2}d)." Also "f(1)=\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}" . Hence homomorphism
Comments
Leave a comment