Describe (list the elements, give the identity and inverses) the cyclic
group generated (under multiplication) by [ 1 1 ]
[0 1] matrix
Solution:
Let given matrix be "A=\\begin{bmatrix}1&1\\\\ 0&1\\end{bmatrix}"
Now, "A^2=\\begin{bmatrix}1&1\\\\ 0&1\\end{bmatrix}^2=\\begin{bmatrix}1&2\\\\ 0&1\\end{bmatrix}"
Next, "A^3=A^2.A=\\begin{bmatrix}1&2\\\\ 0&1\\end{bmatrix}.\\begin{bmatrix}1&1\\\\ 0&1\\end{bmatrix}=\\begin{bmatrix}1&3\\\\ 0&1\\end{bmatrix}"
And so on.
Then, we observe that "A^n=A^{n-1}.A=\\begin{bmatrix}1&n-1\\\\ 0&1\\end{bmatrix}.\\begin{bmatrix}1&1\\\\ 0&1\\end{bmatrix}=\\begin{bmatrix}1&n\\\\ 0&1\\end{bmatrix}\\ne\\begin{bmatrix}1&0\\\\ 0&1\\end{bmatrix}"
We see that for no value of "n" , we have "A^n=I" .
Thus, given matrix A is not cyclic.
Comments
Leave a comment