Find all left cosets of the subgroup {ρ0,ρ2} = {e,(1,3)(2,4)} in D4
Remind that "D_4=\\{\\rho_0=e,\\rho_1=(1\\ 2\\ 3\\ 4), \\rho_2=\\rho_1^2, \\rho_3=\\rho_1^3, \\sigma=(1\\ 3), \\sigma\\rho_1, \\sigma\\rho_1^2, \\sigma\\rho_1^3\\}" , "\\sigma^2=\\rho_1^4=(\\sigma\\rho_1)^2=e". Given an element "g\\in D_4", the left coset in "D_4", generated by the element g and the subgroup "H=\\{e,\\rho_1^2\\}", is the set "\\{gh:h\\in H\\}" . Two left cosets gH and g'H are the same, if and only if "g'\\in gH" , if and only if "g^{-1}g'\\in H" . Let calculate.
"eH=H=\\{e,\\rho_1^2\\}=\\rho_1^2H"
"\\rho_1 H=\\{\\rho_1,\\rho_1^3\\}=\\rho_1^3H"
"\\sigma H=\\{\\sigma, \\sigma\\rho_1^2\\}=\\sigma\\rho_1^2H"
"\\sigma\\rho_1 H=\\{\\sigma\\rho_1, \\sigma\\rho_1^3\\}=\\sigma\\rho_1^3H"
The number of different left cosets is 4. This is an index of the subgroup H in "D_4" .
Comments
Leave a comment