Prove that every ideal I of a ring R is the kernel of a ring homomorphism of R.
Let us prove that every ideal "I" of a ring "R" is the kernel of a ring homomorphism of "R". Consider the quotient ring "R\/I=\\{a+I:a\\in R\\}." Let "\\overline{a}" denotes "a+I." Then "\\overline{a}+\\overline{b}=\\overline{a+b},\\ \\overline{a}\\cdot\\overline{b}=\\overline{a\\cdot b}." Consider the canonical ring homomorphism "\\pi:R\\to R\/I,\\ \\pi(a)=\\overline{a}." It is indeed a homomorphism because of "\\pi(a+b)=\\overline{a+b}=\\overline{a}+\\overline{b}=\\pi(a)+\\pi(b)," "\\pi(a\\cdot b)=\\overline{a\\cdot b}=\\overline{a}\\cdot \\overline{b}=\\pi(a)\\cdot\\pi(b)." It follows that "\\ker\\pi=\\{a\\in R: \\pi(a)=\\overline{0}\\}=\\{a\\in R: \\overline{a}=\\overline{0}\\}\n=\\{a\\in R: a+I=0+I\\}=\\{a\\in R: a\\in I-I\\}=\\{a\\in R: a\\in I\\}=I."
We conclude that "I" is a kernel of a ring homomorphism "\\pi:R\\to R\/I."
Comments
Leave a comment