If the pair of cycles a=(a1,a2,.......am) and b=(b1,b2,.......bm) have no entries in common .show that ab =ba.
"Suppose \\space \\alpha \\space and\\space \\beta\\space are \\space permutations \\space of\\\\\nS= a_{1}, a_{ 2}, . . . , a_{m}, b_{1}, b_{2}, . . . , b_{n}, c_{1}, c_{2}, . . . , c_{k}\\\\where \\space the\\space c\u2019s \\space are \\space left \\space fixed \\space by \\space both \\space \\alpha \\space and \\space \\beta"
"[To \\space show \\space \\alpha \\beta(x) = \\beta\\alpha(x)\\forall \\space x \\space \\in \\space S ]"
"if x = a_{i} \\space for \\space some \\space i, since\\space \\beta fixes\\space all \\space a \\space elements,"
"(\\alpha\\beta)(a_{i})=\\alpha(\\beta(a_{i}))=\\alpha(a_{i})=a _{i+1}(with\\space a_{m+1}=a_1)and"
"(\\beta\\alpha)(a_{i})=\\beta(\\alpha(a_{i}))=\\beta(a_{i})=a _{i+1},\\\\so\\space \\alpha\\beta=\\beta\\alpha \\space on\\space the\\space a \\space elements."
"A \\space similar \\space argument\\space shows\\space \\alpha\\beta = \\beta\\alpha\\space on\\space the\\space b\\space elements."
"Since \\space \\alpha\\space and \\space \\beta\\space both\\space fix\\space the\\space c \\space elements,"
"(\\alpha\\beta)(c_{i})=\\alpha(\\beta(c_{i}))=\\alpha(c_{i})=c_{i}\\space and"
"(\\beta\\alpha)(c_{i})=\\beta(\\alpha(c_{i}))=\\beta(c_{i})=c_{i}."
"thus \\space \\alpha\\beta(x)=\\beta\\alpha(x)\\forall\\space x\\space \\in\\space S"
Comments
Leave a comment