P rove that all real of the form a + b 2 , a; b ∈ Z form s a ring.
We are to prove that the set "\\displaystyle\nS=\\{a+b\\sqrt{2}:a,b\\in\\Z\\}" is a ring.
Let "p=a_1+b_1\\sqrt{2},\\ q=a_2+b_2\\sqrt{2},\\ r=a_3+b_3\\sqrt{2}" belong to "S", then
1] "S" is an abelian group under addition, meaning that:
"-(p+q)+r=p+(q+r)"
we have:
"(a_1+b_1\\sqrt2+a_2+b_2\\sqrt2)+a_3+b_3\\sqrt2=a_1+b_1\\sqrt2+(a_2+b_2\\sqrt2+a_3+b_3\\sqrt2)"
"--p+q=q+p"
we have:
"a_1+b_1\\sqrt2+a_2+b_2\\sqrt2=a_2+b_2\\sqrt2+a_1+b_1\\sqrt2"
"---" There is an element "0=0+0\\sqrt{2}" in "S" if "a_1,\\ b_1=0" such that "p + 0 = p"
"----" For each p in S there exists −p in S such that p + (−p) = 0
we have:
"a_1+b_1\\sqrt2+(-a_1-b_1\\sqrt2)=0"
2] "S" is a monoid under multiplication, meaning that:
"(p \u22c5 q) \u22c5 r = p \u22c5 (q \u22c5 r)"
we have:
"((a_1+b_1\\sqrt2)(a_2+b_2\\sqrt2))(a_3+b_3\\sqrt2)=(a_1+b_1\\sqrt2)((a_2+b_2\\sqrt2)(a_3+b_3\\sqrt2))"
There is an element "1=1+0\\sqrt{2}" in "S\\ \\text{if }a=1, b=0" such that p ⋅ 1 = p and 1 ⋅ p = p
3] Multiplication is distributive with respect to addition, meaning that:
p ⋅ (q + r) = (p ⋅ q) + (p ⋅ r)
we have:
"(a_1+b_1\\sqrt2)(a_2+b_2\\sqrt2+a_3+b_3\\sqrt2)=(a_1+b_1\\sqrt2)(a_2+b_2\\sqrt2)+"
"+(a_1+b_1\\sqrt2)(a_3+b_3\\sqrt2)"
(q + r) ⋅ p = (q ⋅ p) + (r ⋅ p)
we have:
"(a_2+b_2\\sqrt2+a_3+b_3\\sqrt2)(a_1+b_1\\sqrt2)=(a_1+b_1\\sqrt2)(a_2+b_2\\sqrt2)+"
"+(a_1+b_1\\sqrt2)(a_3+b_3\\sqrt2)"
Comments
Leave a comment