Prove or disprove that the polynomial 21x^3 - 3x^2 + 2x + 9 is irreducible over Z2 , but not over Z3. Justify your answer.
"To\\,\\,be\\,\\,reducible\\,\\,a\\,\\,polynomial\\,\\,of\\,\\,power\\,\\,3 needs\\,\\,to\\,\\,have\\,\\,a\\,\\,root\\\\\\mathbb{Z} _2:\\\\P\\left( x \\right) =x^3+x^2+1\\\\P\\left( 0 \\right) =0+0+1=1\\\\P\\left( 1 \\right) =1+1+1=1\\\\No\\,\\,roots\\Rightarrow irreducible\\\\\\mathbb{Z} _3:\\\\P\\left( x \\right) =2x\\\\P\\left( 0 \\right) =0\\\\x=0-a\\,\\,root\\Rightarrow reducible\\\\True."
Comments
Leave a comment