Let G be a group and H be a non-empty finite subset of .G If ab∈H∀ b,a ∈ H then show that H ≤ .G Will the result remain true if H is not finite? Give reasons for your answer.
Check whether or not R is a normal subgroup of the group H = (R + Ri + Rj+ Rk,+ )where i²=j²=k² =-1,ij=-ji,jk=-kj,ki=-ik=and
( a+ bi + cj+ dk) + (a ′ + b′i + ′jc + d′ )k = (a + a′) + ( b+ b′ i) + (c + c′ j) + ( d+ d′ k) for
d,c,b,a,d',c',b',a ′∈ R.
Define ~ on R by ‘ a ~ b iff a − b∈Z ’. Check whether or not ~ is an equivalence relation on R. If it is, find [√5 ]Else, give another equivalence relation on R