If a, b and c are the roots of the equation x^3 -6x^2 +10x-6 =0 , find the values of a^2 +b^2 +c^2 and 1/a + 1/b + 1/c.
If "a, b" and "c" are the roots of the equation "x^3 -6x^2 +10x-6 =0 ," let us find the values of "a^2 +b^2 +c^2" and "\\frac{1}a + \\frac{1}b + \\frac{1}c."
According to Vieta's formulas, "a+b+c=6,\\ ab+ac+bc=10,\\ abc=6."
Then we get
"a^2 +b^2 +c^2=(a+b+c)^2-2(ab+bc+ac)=6^2-2\\cdot 10=36-20=16"
and
"\\frac{1}a + \\frac{1}b + \\frac{1}c=\\frac{bc+ac+ab}{abc}=\\frac{10}{6}=\\frac{5}3."
Comments
Leave a comment