6. Solve for x: a) 10x - 6= 5x - 4; b) 4x (2x - 1) = 2(3 - x).
7. Given a triangle KLM with an unknown angle, calculate the value of x if K= 12, L= 23, and M= x.
if 4x (x + 2) is "4x\\cdot(x+2)" , then "4x\\cdot(x+2) = 4x\\cdot x + 4x\\cdot2 = 4x^2 + 8x" ("4x\\cdot2 = 4\\cdot2\\cdot x" by associativity property)
b) "(3x + 5)(2x + 3) = 3x\\cdot(2x + 3) + 5\\cdot(2x + 3) = 3x\\cdot2x + 3x\\cdot3 + 5\\cdot2x + 5\\cdot3 = 6x^2 + 9x + 10x + 15 = 6x^2 + 19x + 15"
c) if 27x y^3 /3x^3 y^2 is "\\frac{27\\cdot y^3} {3x^3 y^2}" then "\\frac{27\\cdot y^3} {3x^3 y^2} = \/\\frac{y^3}{y^2} = y\/ = \\frac{27\\cdot y} {3x^3} = \/\\frac{27}{3} = 9\/ = \\frac{9\\cdot y} {x^3}"
if 27x y^3 /3x^3 y^2 is "\\frac{27x\\cdot y^3} {3x^3 y^2}" then "\\frac{27x\\cdot y^3} {3x^3 y^2} = \\frac{27x\\cdot y}{3x^3} = \\frac{9x\\cdot y}{x^3} = \\frac{9y}{x^2}"
6. a)
b) if 4x (2x - 1) is "4x (2x - 1)" then:
if 4x (2x - 1) is "4\\cdot (2x - 1)" then:
7. Sum of triangle's angles is "180\\degree". Then
Answers:
b) "6x^2 + 19x + 15"
c) "\\frac{9\\cdot y} {x^3}" OR c) "\\frac{9y}{x^2}" -- depends on the condition
6. a) x = 2/5 = 0,4
b) x1 = 1, x2 = -0,75 OR b) x = 1 -- depends on the condition
7. 145
Comments
Leave a comment