Find the producer's surplus at Q = 9 for the following supply functions:
(a) P = 12 + 2Q
(b) P = 20βQ + 15
a) ="P=12+2Q"
At Q=9,P=12+18=30
Therefore producer's surplus ="P. Q-\\int PdQ"
"=(30)(9)-\\int(12+2Q)dQ"
"=270-[12Q+Q^2] ^9_0"
"=270-[108+81]"
"=81"
b) "P=20\\sqrt{Q}+15"
At Q=9,"P=20\\sqrt{9}+15 =75"
Producer's Surplus ="PQ-\\int PdQ"
"=(75)(9)-\\int 20\\sqrt{Q}+15 dQ"
"=675-[20\\frac {Q^{\\frac {3} {2} }}{\\frac {3} {2}} +15Q]^9_0"
"=675-495"
"=180"
Comments
Leave a comment