Find all rational solutions of x4−6x3+22x2−30x+13=0
"x^4\u22126x^3+22x^2\u221230x+13=0"
Let f(x) = x4−6x3+22x2−30x+13
"f(1) = 1-6+22-30+13=0"
So, "(x-1)" is a factor of "f(x)."
So, "x^4\u22126x^3+22x^2\u221230x+13 = (x-1)" ("x^3-5x^2+17x-13" )
Let "g(x)=x^3-5x^2+17x-13"
"g(1)=1-5+17-13=0"
So, "(x-1)" is a factor of "g(x)."
Thus, "f(x)=(x-1).g(x)=(x-1)(x-1)(x^2-4x+13)"
Now, put "(x^2-4x+13)=0"
Using Quadratic formula:
"x=\\frac{4\\pm\\sqrt{16-52}}{2}=\\frac{4\\pm6i}{2}=2\\pm3i"
Hence, the solution are "x=1,1,2+3i,2-3i" and rational solutions are "x=1,1"
Comments
Leave a comment