Search results for If v=(y²+z²-x²) î+ (z²+x²-y²) j^+(x²+y²-z²) k^, then find to it's divergence v and curl v?
div "\\overrightarrow{V}=\\frac{\\partial}{\\partial\\>x}(y^2+z^2-x^2)+\\frac{\\partial}{\\partial\\>y}(z^2+x^2-y^2)+\\frac{\\partial}{\\partial\\>z}(x^2+y^2-z^2)"
"=-2-2y-2z"
"=-2(x+y+z)"
"Curl{\\overrightarrow{V}}" ."\\begin{vmatrix}\n i & j&k\\\\\n \\frac{\\partial}{\\partial\\>x}&\\frac{\\partial}{\\partial\\>y}&\\frac{\\partial}{\\partial\\>z} \\\\\ny^2+z^2-x^2&z^2+x^2-y^2&x^2+y^2-z^2\n\\end{vmatrix}"
"=(2y-2z)\\utilde{i}+(2z-2x)\\utilde{j}+(2x-2y)\\utilde{k}"
"=2(y-z)\\utilde{i}-2(x-z)\\utilde{j}+2(x-y)\\utilde{k}"
Comments
Leave a comment