Solve the following Non-Homogeneous systems by Gauss elimination and Gauss
Jordan Method.
a) 2x + y + 4z = 12
8x - 3y + 2z = 20 4x + 11y - z = 33
By Gauss elimination (or Gauss jordan):
"\\left\\{\\begin{array}{l}\n\n2 x+y+4 z=12 \\\\\n\n8 x-3 y+2 z=20 \\\\\n\n4 x+11 y-z=33\n\n\\end{array}\\right."
Rewrite the system in matrix form and solve it by Gaussian Elimination (Gauss-Jordan elimination)
"\\left(\\begin{array}{ccc|c}\n\n2 & 1 & 4 & 12 \\\\\n\n8 & -3 & 2 & 20 \\\\\n\n4 & 11 & -1 & 33\n\n\\end{array}\\right)"
"\\mathrm{R}_{1} \/ 2 \\rightarrow \\mathrm{R}_{1}" (divide the 1 row by 2 )
"\\left(\\begin{array}{ccc|c}\n\n1 & 0.5 & 2 & 6 \\\\\n\n8 & -3 & 2 & 20 \\\\\n\n4 & 11 & -1 & 33\n\n\\end{array}\\right)"
"\\mathrm{R}_{2}-8 \\mathrm{R}_{1} \\rightarrow \\mathrm{R}_{2}" (multiply 1 row by 8 and subtract it from 2 row);
"\\mathrm{R}_{3}-4 \\mathrm{R}_{1} \\rightarrow \\mathrm{R}_{3}" (multiply 1 row by 4 and subtract it from 3 row)
"\\left(\\begin{array}{ccc|c}\n\n1 & 0.5 & 2 & 6 \\\\\n\n0 & -7 & -14 & -28 \\\\\n\n0 & 9 & -9 & 9\n\n\\end{array}\\right)"
"\\mathrm{R}_{2} \/-7 \\rightarrow \\mathrm{R}_{2}" (divide the 2 row by -7 )
"\\left(\\begin{array}{ccc|c}\n\n1 & 0.5 & 2 & 6 \\\\\n\n0 & 1 & 2 & 4 \\\\\n\n0 & 9 & -9 & 9\n\n\\end{array}\\right)"
"\\mathrm{R}_{1}-0.5 \\mathrm{R}_{2} \\rightarrow \\mathrm{R}_{1}" (multiply 2 row by 0.5 and subtract it from 1 row);
"\\mathrm{R}_{3}-9 \\mathrm{R}_{2} \\rightarrow \\mathrm{R}_{3}" (multiply 2 row by 9 and subtract it from 3 row)
"\\left(\\begin{array}{ccc|c}\n\n1 & 0 & 1 & 4 \\\\\n\n0 & 1 & 2 & 4 \\\\\n\n0 & 0 & -27 & -27\n\n\\end{array}\\right)"
"\\mathrm{R}_{3} \/-27 \\rightarrow \\mathrm{R}_{3}" (divide the 3 row by -27 )
"\\left(\\begin{array}{lll|l}\n\n1 & 0 & 1 & 4 \\\\\n\n0 & 1 & 2 & 4 \\\\\n\n0 & 0 & 1 & 1\n\n\\end{array}\\right)"
"\\mathrm{R}_{1}-1 \\mathrm{R}_{3} \\rightarrow \\mathrm{R}_{1}" (multiply 3 row by 1 and subtract it from 1 row);
"\\mathrm{R}_{2}-2 \\mathrm{R}_{3} \\rightarrow \\mathrm{R}_{2}" (multiply 3 row by 2 and subtract it from 2 row)
"\\left(\\begin{array}{lll|l}\n\n1 & 0 & 0 & 3 \\\\\n\n0 & 1 & 0 & 2 \\\\\n\n0 & 0 & 1 & 1\n\n\\end{array}\\right)"
Thus, "x=3,y=2,z=1"
Comments
Leave a comment