find the values of k for which the following equations have two distinct roots.
(a) x^2+8x+3=k
(b) 2x^2-5x =4-k
(c) kx^2-4x+2=0
(d) kx^2+2(k-1)x+k=0
(e) 2x^2=2(x-1)+k
(f) kx^2+(2k-5)x=1-k
(a)
"D=(8)^2-4(1)(3-k)>0"
"4(13+k)>0"
"k>-13"
"k\\in( -13, \\infin)"
(b)
"D=(-5)^2-4(2)(k-4)>0"
"57-8k>0"
"k<\\dfrac{57}{8}"
"k\\in(-\\infin, \\dfrac{57}{8})"
(c)
"k\\not=0"
"D=(-4)^2-4(k)(2)>0""16-8k>0"
"k<2"
"k\\in(-\\infin, 0)\\cup(0, 2)"
(d)
"k\\not=0"
"D=(2(k-1))^2-4(k)(k)>0""1-2k>0"
"k<\\dfrac{1}{2}"
"k\\in(-\\infin, 0)\\cup(0, \\dfrac{1}{2})"
(e)
"x^2-x+(1-\\dfrac{k}{2})=0"
"D=(-1)^2-4(1)(1-\\dfrac{k}{2})>0"
"-3+2k>0"
"k>\\dfrac{3}{2}"
"k\\in (\\dfrac{3}{2}, \\infin)"
(f)
"k\\not=0"
"4k^2-20k+25-4k^2+4k>0"
"-16k+25>0"
"k<\\dfrac{25}{16}"
"k\\in(-\\infin, 0)\\cup(0, \\dfrac{25}{16})"
Comments
Leave a comment