z1=3.45∠980°
z2=5+9i
z1=3.45∠980° = 3.45 ∠ 260o
= 3.45(cos 260o + j sin 260o)
= −0.6 − 3.4i
z2=5+9i
="Now, \\displaystyle{r}=\\sqrt{{{\\left({5}\\right)}^{2}+{\\left({9}\\right)}^{2}}}=\\sqrt{{{106}}}"
"And, \\displaystyle\\theta= \\arctan{{\\left(\\frac{9}{{5}}\\right)}}" = 610
z2 = "\\sqrt{{{106}}}" (cos(610)+jsin(610))
(1) z1+z2 in polar form
z1+z2 = (−0.6 − 3.4j) + (5+9j) = 4.4 + 5.6j
In polar form,
Hence, 4.40 + 5.60j = 7.12 ∠ 51.84o [Answer]
(2) z1-z2 trigonometric form
z1- z2 =( −0.6 − 3.4i) - (5+9i)
= -5.6 - 12.4j
In trigonometric form
"Now, \\displaystyle{r}=\\sqrt{{{\\left({-5.6}\\right)}^{2}+{\\left({-12.4}\\right)}^{2}}}={13.606}"
"And, \\displaystyle\\theta= \\arctan{{\\left(\\frac{-12.4}{{-5.6}}\\right)}}"
= 2460
Thus,
z1- z2 = 13.606 (cos (2460)+jsin(2460)) [Answer]
(3) z2*z1 exponential form
z1=3.45∠980° = "3.45e^{j(\\frac{980}{180}\\pi )}" = "3.45e^{j(5.44\\pi )}"
z2 = 5 +9j = "\\sqrt{{{106}}}e^{j(\\frac{61}{180}\\pi)} = \\sqrt{{{106}}}e^{j(0.34\\pi)}"
hence,
z2*z1 = "3.45e^{j(5.44\\pi )}*\\sqrt{{{106}}}e^{j(0.34\\pi)}"
="3.45*\\sqrt{{{106}}}e^{j(5.44\\pi +0.34\\pi) )}"
= "35.52e^{j(5.78\\pi )}" [Answer]
Comments
Leave a comment