Let T : R4--> R4 be the linear transfoi-mation
defined by
T(x1, X2, X3, X4) = (— x2, X1, — x4, X3).
Check that T4 = I. Also, find the minimal
polynomial of T.
T(x1, x2, x3, x4) =(−x2, x1, −x4, x3)
We should write in matrix firstly:
"T=\n\\begin{bmatrix}\n 0 & -1 & 0 & 0 \\\\\n 1 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & -1 \\\\\n 0 & 0 & 1 & 0 \\\\\n\\end{bmatrix} ;"
In order to show that T matrix does not have real eigen values, should calculate "(\\lambda\\times I-A)" matrix:
"(\\lambda\\times I-A)=\n\\lambda \\times\n\\begin{bmatrix}\n 1 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 1 \\\\\n\\end{bmatrix} -" "\\begin{bmatrix}\n 0 & -1 & 0 & 0 \\\\\n 1 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & -1 \\\\\n 0 & 0 & 1 & 0 \\\\\n\\end{bmatrix} ="
"\\begin{bmatrix}\n \\lambda & 0 & 0 & 0 \\\\\n 0 & \\lambda & 0 & 0 \\\\\n 0 & 0 & \\lambda & 0 \\\\\n 0 & 0 & 0 & \\lambda \\\\\n\\end{bmatrix} -\n\\begin{bmatrix}\n 0 & -1 & 0 & 0 \\\\\n 1 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & -1 \\\\\n 0 & 0 & 1 & 0 \\\\\n\\end{bmatrix} =" "\\begin{bmatrix}\n \\lambda & 1 & 0 & 0 \\\\\n -1 & \\lambda & 0 & 0 \\\\\n 0 & 0 & \\lambda & 1 \\\\\n 0 & 0 & -1 & \\lambda \\\\\n\\end{bmatrix};"
And find det of "(\\lambda\\times I-A)" matrix:
"\\lambda \\times (-1)^{1+1}\n\\begin{bmatrix}\n \\lambda & 0 & 0 \\\\\n 0 & \\lambda & 1 \\\\\n 0 & -1 & \\lambda \\\\\n\\end{bmatrix}+\n1 \\times (-1)^{1+2} \\times" "\\begin{bmatrix}\n -1 & 0 & 0 \\\\\n 0 & \\lambda & 1 \\\\\n 0 & -1 & \\lambda \\\\\n\\end{bmatrix}="
"\\lambda \\times (\\lambda^3+ \\lambda) -(-\\lambda^2-1)=" "\\lambda \\times (\\lambda^3+ \\lambda) -(-\\lambda^2-1)= \\lambda^4+\\lambda^2+\\lambda^2+1=" "\\lambda^4+2\\lambda^2+1;"
And then will equate the polynomial formed by the eigen values to 0:
"\\lambda^4+2\\lambda^2+1=0"
"\\lambda^2" is greater than or equal to 0. The left-hand side of the equation is greater than or equal to 1, but the right-hand side of the equation is 0. The equality cannot be true. So this equation doesn't have real solutions. Thus,the matrix T does not have real eigen values.
Comments
Leave a comment