"x+\\sqrt{12-\\sqrt{x}}=12"
Solve this equation for x.
Please provide the full steps.
"\\sqrt{12-\\sqrt{x}}=12-x""\\bigg(\\sqrt{12-\\sqrt{x}}\\bigg)^2=(12-x)^2"
"12-\\sqrt{x}=144-24x+x^2"
"x^2-24x+\\sqrt{x}+132=0"
"(\\sqrt{x})^4-24(\\sqrt{x})^2+\\sqrt{x}+132=0"
"(\\sqrt{x}+4)(\\sqrt{x}-3)((\\sqrt{x})^2-\\sqrt{x}-11)=0"
"\\sqrt{x}+4>0"
"\\sqrt{x}-3=0=>x=9"
"(\\sqrt{x})^2-\\sqrt{x}-11=0"
"D=(-1)^2-4(1)(-11)=45"
"\\sqrt{x}=\\dfrac{1\\pm\\sqrt{45}}{2}"
Since "\\sqrt{x}\\ge0," we take
"x=\\dfrac{(1+3\\sqrt{5})^2}{4}"
"x=\\dfrac{23+3\\sqrt{5}}{2}>12, does\\ not\\ satisfy"
"\\{9\\}"
Comments
Leave a comment