1. Solve the matrix equation 4π³ββ¬=π³β¬+2π if π=(β2141), β¬=(71β72).
Β
2. Calculate the inverse matrix to the matrix π=(001011111). Check whether the obtained inverse matrix is correct.
Β
3. Solve the system of linear equations: π₯β2π¦+π§=5,β2π₯+3π¦βπ§=β8,βπ₯βπ¦+2π§=2.
Β
Β
4. Calculate the area of the flat shape bounded by the curves: π¦=βπ₯β1,π¦=3βπ₯,π¦=0.
Β
5. Find all the extrema of the function π(π₯)=β16βπ₯2.
Β
6. Find the maximal intervals of convexity (concavity) of the function π(π₯)=2π₯+arctg(3π₯). Find the respective inflection points.
Β
1.
Let
Then
2.
"\\begin{pmatrix}\n 0 & 0 & 1 & | & 1 & 0 & 0\\\\\n 0 & 1 & 1 & | & 0 & 1 & 0\\\\\n 1 & 1 & 1 & | & 0 & 0 & 1\\\\\n\\end{pmatrix}"
Swap the rowsΒ 1andΒ 3
"R_1=R_1-R_2"
"R_2=R_2-R_3"
On the left is the identity matrix. On the right is the inverse matrix.
Check
"=\\begin{pmatrix}\n 0+0+1 & 0+0+0 & 0+0+0\\\\\n 0-1+1 & 0+1+0 & 0+0+0\\\\\n 0-1+1 & -1+1+0 & 1+0+0\\\\\n\\end{pmatrix}"
"=\\begin{pmatrix}\n 1 & 0 & 0\\\\\n 0 & 1 & 0\\\\\n 0 & 0 & 1\\\\\n\\end{pmatrix}=I_3"
"A^{-1}=\\begin{pmatrix}\n 0 & -1 & 1\\\\\n -1 & 1 & 0\\\\\n 1 & 0 & 0\\\\\n\\end{pmatrix}"
3.
No solution
4.
"3-x=0=>x=3"
"\\sqrt{x-1}=3-x=>x-1=9-6x+x^2, 1\\le x\\le3"
"x^2-7x+10=0"
"(x-2)(x-5)=0"
Since "1\\le x\\le3," we take "x=2."
"=[\\dfrac{2(x-1)^{3\/2}}{3}]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}+[3x-\\dfrac{x^2}{2}]\\begin{matrix}\n 3 \\\\\n2\n\\end{matrix}"
"=\\dfrac{2}{3}-0+9-\\dfrac{9}{2}-6+2=\\dfrac{7}{6}({units}^2)"
5.
Domain: "[-4, 4]"
"f'(x)=0=>-\\dfrac{x}{\\sqrt{16-x^2}}=0"
"x=0"
Critical numbers:"-4, 0, 4."
"f(0)=4"
The function has a local minimum at "(-4,0)" and at "(4,0)."
The function has a local maximum at "(0,4)."
Β
6.
Domain: "(-\\infin, \\infin)"
"f''(x)=-\\dfrac{54x}{(1+9x^2)^2}"
"f''(x)=0=>-\\dfrac{54x}{(1+9x^2)^2}=0"
"x=0"
"f(0)=0"
If "x<0, f''(x)>0, f(x)" is concave upward.
If "x>0, f''(x)<0, f(x)" is concave downward.
The function "f(x)" is concave upward on "(-\\infin, 0)."
The function "f(x)" is concave downward on "(0,\\infin)."
Point "(0,0)" is the inflection point.
Comments
Leave a comment