Suppose the functions f,g and h are defined by f(x)=3^x+3^-x+3 and g(x)=log5(x+2)+log5(3)-log4(2x-3) and h(x)=e^x+15e^-x respectively 4.1 write down the sets Df,DG and Dh that represent the domains of f g and h respectively. 4.2 solve the equation f(x)=12 for x. 4.3 solve the inequality g(x)= 0 for x. 4.4solve h(x)=8 for x. Leave the answer in terms of ln, where necessary
4.1
"Df: (-\\infin, \\infin)"
"Dg:(\\dfrac{3}{2}, \\infin)"
"Dh: (-\\infin, \\infin)"
4.2
"3^x+3^{-x}+3=12"
"(3^x)^2-9(3^x)+1=0"
"Determinant=(-9)^2-4(1)(1)=77"
"3^x=\\dfrac{9\\pm\\sqrt{77}}{2(1)}"
"x_1=\\dfrac{\\ln(\\dfrac{9-\\sqrt{77}}{2})}{\\ln3},"
"x_2=\\dfrac{\\ln(\\dfrac{9+\\sqrt{77}}{2})}{\\ln3}"
4.3
"\\log_4\\dfrac{3(x+2)}{5(2x-3)}=0"
"\\dfrac{3(x+2)}{5(2x-3)}=1"
"3x+6=10x-15"
"x=3"
4.4
"(e^x)^2-8(e^x)+15=0"
"(e^x-3)(e^x-5)=0"
"e^x-3=0\\ or\\ e^x-5=0"
"x_1=\\ln 3, x_2=\\ln 5"
Comments
Leave a comment