Prove that |a+b| - |a-b| ≤ 2|b|.
Consider paralelogram "ABCD"
"\\overrightarrow{AB}=\\vec a, \\overrightarrow{AD}=\\vec b"Then
The sum of any two sides of a triangle is greater than or equal to the third side.
Then
"|\\vec{a}+\\vec {b}|-|\\vec{a}-\\vec {b}|\\le 2|\\vec{b}|"
Comments
Leave a comment