Determine the average value of F(x, y, z) = xyz throughout the cubical region D
bounded by the coordinate planes and the planes x = 2, y − 2, z = 2 in the first octant.
ANSWER: The average value of "F(x,y,z)=xyz" throughout the cubical region D is 1.
EXPLANATION. The average value of "F(x,y,z)=xyz" throughout the cubical region D is the number
"F_{avg}=\\frac{1}{Volume \\: of\\: R} \\iiint _ {R} F(x,y,z)dV" .
"{Volume \\: of\\: R}= \\iiint _ {R} dV =\\int_{0}^{2} \\int_{0}^{2}\\int_{0}^{2}dxdydz=\\left ( \\int_{0}^{2}dx \\right )\\cdot \\left ( \\int_{0}^{2}dy \\right )\\cdot\\left ( \\int_{0}^{2}dz \\right )=\\\\=2^{3}=8,\\\\ \\iiint _ {R}F(x,y,z) dV =\\int_{0}^{2} \\int_{0}^{2}\\int_{0}^{2}xyzdxdydz=\\left ( \\int_{0}^{2}xdx \\right )\\cdot \\left ( \\int_{0}^{2}ydy \\right )\\cdot\\left ( \\int_{0}^{2}zdz \\right )= \\left ( \\left [ \\frac{x^{2}}{2} \\right ] _{0}^{2}\\right )\\cdot\\left ( \\left [ \\frac{y^{2}}{2} \\right ] _{0}^{2}\\right )\\cdot\\left ( \\left [ \\frac{z^{2}}{2} \\right ] _{0}^{2}\\right )=\\frac{2^2-0}{2 }\\cdot\\frac{2^2-0}{2 }\\cdot\\frac{2^2-0}{2 }=8.\\\\"
Comments
Leave a comment