Let π(π₯) = βπ₯β + ββπ₯β, where βπ₯β is the greatest integer less than or equal to π₯.
(π) For what values of π, does limπ₯βπ
π(π₯)exist?
(π) At what numbers is π discontinuous?
(a) Let "a\u2208\u211d" such that "a\u2209\u2124" .
let "\\lfloor{a}\\rfloor=m"
"=> \\lfloor{-a}\\rfloor=-(m+1)"
There exist "\u03b5>0" such that "\u2200 r\u2208(a-\u03b5,a+\u03b5)"
"=> \\lfloor{r}\\rfloor=m"
and "\\lfloor{-r}\\rfloor=-(m+1)"
Thus,
"\\lim\\limits_{x\\rarr a^{+}}f(x)=\\lim\\limits_{x\\rarr a^{-}} f(x)=\\lim\\limits_{x\\rarr a}f(x)"
"=\\lfloor{r}\\rfloor+\\lfloor{-r}\\rfloor=m-(m+1)=-1"
Suppose "a\u2208\u2124" . There exist "\u03b5>0" such that "\u2200 k\u2208(a-\u03b5, a)"
"=> \\lfloor{k}\\rfloor=a-1"
and "\\lfloor{-k}\\rfloor=-a"
"\\lim\\limits_{x\\rarr a^{-}}f(x)=\\lfloor{k}\\rfloor+\\lfloor{-k}\\rfloor=(a-1)-a=-1"
Also, there exists "\u03b5>0" such that "\u2200 k\u2208(a, a+\u03b5)"
"=> \\lfloor{k}\\rfloor=a"
and "\\lfloor{-k}\\rfloor=-(a+1)"
"\\lim\\limits_{x\\rarr a^{+}}f(x)=\\lfloor{k}\\rfloor+\\lfloor{-k}\\rfloor=a-(a+1)=-1"
"\\lim\\limits_{x\\rarr a^{+}}f(x)=\\lim\\limits_{x\\rarr a^{-}} f(x)=\\lim\\limits_{x\\rarr a}f(x)=-1"
Hence, "\\lim\\limits_{x\\rarr a}f(x)" exists for all "a\u2208\u211d"
(b) Let "x\u2208\u211d" such that "x\u2209\u2124"
let "\\lfloor{x}\\rfloor=m"
"=>\\lfloor{-x}\\rfloor=-(m+1)"
"f(x)=\\lfloor{x}\\rfloor+\\lfloor{-x}\\rfloor=m-(m+1)=-1"
We established in (a) above that "\\lim\\limits_{x\\rarr a}f(x)=-1" , where a is any non-integer
Thus, "\\lim\\limits_{x\\rarr a}f(x)=f(x)" .
In addition, "f(x)" is defined "\u2200 x\u2208\u211d"
Thus, f is continuous at any non-integer point
Suppose "x\u2208\u2124" .
"f(x)=\\lfloor{x}\\rfloor+\\lfloor{-x}\\rfloor=x-x=0"
We established in (a) above that "\\lim\\limits_{x\\rarr a}f(x)=-1" , where a is any integer
Thus, "\\lim\\limits_{x\\rarr a}f(x)\u2260f(x)"
Hence, f is discontinuous at any integer point.
f is discontinuous "\u2200x\u2208\u2124"
Comments
Leave a comment