Prove that x(1 + x) > (1 + x) In(1 + x) > x
"x<(1+x)ln(1+x)<x(1+x)"
"let f(x)=(1+x)ln(1+x)-x..............(1)"
"f'(x)=(1+x)(\\frac{1}{1+x})+ln(1+x)1-1"
i.e. "x>0; f(x)>f(0), where f(0)=(1+0)ln(1+x)-0=0"
Hence, f(x)>0
We use 1 above
"(1+x)ln(1+x)-x>0 ;"
Let g(x)=x(1+x)-(1+x)ln(1+x)........(2)
"g'(x)=(2x+1)-((1+x)\\frac{1}{1+x}+ln(1+x)1"
From this we find that,
"g(x)>g(0), where \\,g(0)=0(1+0)-(1+0)ln(1+0)=0"
g(x)>0...use (2)
"x(1+x)-(1+x)ln(1+x)>0"
"x(1+x)>(1+x)ln(1+x).........(N)"
From (N)and (M)
x<(1+x)ln(1+x)<x(1+x)
Hence it's clear that,
Comments
Leave a comment