5. Express as a double integral the area enclosed by one loop of the curve đ = 3 cos 2đ and
evaluate the integral
One loop of the curve is presented on the image below:
where "\\theta\\in[-\\frac{\\pi}{4},\\frac{\\pi}{4}]". "r\\in[0,3]."
Remind that for the polar coordinates: "x=r\\,cos\\,\\theta" and "y=r\\,sin\\,\\theta". "x\\in[0,3\\frac{\\sqrt{2}}{2}]", "y\\in[-3\\frac{\\sqrt{2}}{2},3\\frac{\\sqrt{2}}{2}]" It implies "x^2+y^2=r^2". The trigonometric formula for "cos\\,2\\theta" has the form: "cos\\,2\\theta=2\\,cos^2\\theta-1=\\frac{2x^2}{r^2}-1=\\frac{2x^2}{x^2+y^2}-1". Thus, the formula of the curve takes the form: "\\sqrt{x^2+y^2}=\\frac{2x^2}{x^2+y^2}-1". Simplifying the latter we receive: "(x^2+y^2)^{3\/2}=x^2-y^2". The latter implies "(x^2+y^2)^3=(x^2-y^2)^2" . The double integral for the area takes the form: "S=\\int\\int_{D}dxdy", where "D" is the area enclosed by the curve on the picture. I.e., "(x^2+y^2)^3=(x^2-y^2)^2", where "x\\in[0,3\\frac{\\sqrt{2}}{2}]", "y\\in[-3\\frac{\\sqrt{2}}{2},3\\frac{\\sqrt{2}}{2}]". However, it is easier to compute such an area in polar coordinates. The formula is: "S=\\frac{1}{2}\\int_{-\\pi\/4}^{\\pi\/4}r^2d\\theta=\\frac{1}{2}\\int_{-\\pi\/4}^{\\pi\/4}9cos^2(2\\theta)d\\theta=\\frac{9}{2}\\int_{-\\pi\/4}^{\\pi\/4}\\frac{1+cos(4\\theta)}{2}d\\theta=\\frac{9}{4}(\\theta+\\frac{sin(4\\theta)}{4})|_{-\\pi\/4}^{\\pi\/4}=\\frac{9}{8}\\pi"
The answer is "\\frac{9}{8}\\pi."
Comments
Leave a comment