Find y' if x^y^2=y^x^2
"x^{y^2}=y^{x^2}\\\\y^2\\ln x=x^2\\ln y\\\\d\\left( y^2\\ln x \\right) =d\\left( x^2\\ln y \\right) \\\\2y\\ln xdy+\\frac{y^2}{x}dx=2x\\ln ydx+\\frac{x^2}{y}dy\\\\\\left( 2y\\ln x-\\frac{x^2}{y} \\right) dy=\\left( 2x\\ln y-\\frac{y^2}{x} \\right) dx\\\\\\frac{dy}{dx}=\\frac{2x\\ln y-\\frac{y^2}{x}}{2y\\ln x-\\frac{x^2}{y}}"
Comments
Leave a comment