A region is bounded by y = square root of x, the x-axis, and x = 4. Write the integral that represents the volume of this region revolved about the line y = 3
"V=\\int_0^4{\\pi \\cdot 3^2dx}-\\int_0^4{\\pi \\cdot \\left( 3-\\sqrt{x} \\right) ^2dx}=\\\\=\\pi \\int_0^4{\\left( 6\\sqrt{x}-x \\right) dx}=\\pi \\left( 6\\cdot \\frac{2}{3}\\cdot 4^{3\/2}-\\frac{4^2}{2} \\right) =24\\pi"
Comments
Leave a comment