8) Write the first four terms of a Maclaurin series for đ(đ„)=đđ„?
The Taylor series of a function fâ(x) that is infinitely differentiable at a number "a"  is the power series
"f(x)=f(a)+\\frac{f'(a)}{1!}(x-a)+\\frac{f''(a)}{2!}(x-a)^2+""\\frac{f'''(a)}{3!}(x-a)^2+..." .
When "a=0", the series is also called a Maclaurin series.
"f(x)=e^x" , "f(0)=1" ;
"f'(x)=e^x" , "f'(0)=1" ;
"f''(x)=e^x" , "f''(0)=1" ;
"f'''(x)=e^x" , "f'''(0)=1" .
"e^x=1+\\frac{1}{1!}(x-0)+\\frac{1}{2!}(x-0)^2+\\frac{1}{3!}(x-0)^3+...=""1+x+\\frac12x^2+\\frac16x^3+..."
Answer: "e^x=1+x+\\frac12x^2+\\frac16x^3+..." .
Comments
Leave a comment