The following function is continuous at x = 0:
π(π₯) =
(1βcosππ₯)/(xtanx)
, πππ π₯ β 0 πππ π(0) = 3. find k.
Using the well-known trigonometric identity, we get: "1-\\cos\\,kx=2\\,sin^2\\frac{k}{2}x". Thus, the function can be rewritten as: "\\frac{2\\sin^2\\frac{k}{2}x}{x\\,\\tan\\,x}". Remind the well-known limit: "\\frac{\\sin\\,x}{x}\\rightarrow1,x\\rightarrow0". We rewrite the expression and receive: "\\frac{xk^2}{4}\\frac{2\\sin^2\\frac{k}{2}x}{\\frac{k^2}{4}x^2\\,\\tan\\,x}". Since, "\\frac{x}{\\tan\\,x}\\rightarrow1,x\\rightarrow0" and "\\frac{\\sin\\,x}{x}\\rightarrow1,x\\rightarrow0", we get: "\\frac{xk^2}{4}\\frac{2\\sin^2\\frac{k}{2}x}{\\frac{k^2}{4}x^2\\,\\tan\\,x}\\rightarrow\\frac{k^2}{4},x\\rightarrow0". From the latter and from the formulation of the task we get: "\\frac{k^2}{4}=3". Finally, we get: "k=\\pm\\sqrt{12}." Thus, the answer is: "k=\\pm\\sqrt{12}."
Comments
Leave a comment