Find the length of arc of the curve π¦ = π₯ 3β2 /β3 from (0, 0) to (4, β8 / 3 )
If "x=4, y=8\/\\sqrt{3}"
"=\\displaystyle\\int_{0}^{4}\\sqrt{1+(\\dfrac{\\sqrt{3}}{2}\\sqrt{x})^2}dx"
"=\\dfrac{1}{2}\\displaystyle\\int_{0}^{4}\\sqrt{4+3x}dx"
"=\\dfrac{1}{2}[\\dfrac{1}{3}(\\dfrac{2}{3}(4+3x)^{3\/2})]\\begin{matrix}\n 4\\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{9}(64-8)=\\dfrac{56}{9}"
Comments
Leave a comment