(i) Given "a_n=-n+2." Prove
"a_{n-1}+2a_{n-2}+2n-9=-n+3-2n+8+2n-9=""=-n+2=a_n,n\\geq2"
(ii) Given "a_n=5(-1)^n-n+2." Prove
"a_{n-1}+2a_{n-2}+2n-9=-5(-1)^n-n+3+""+2\\cdot 5(-1)^n-2n+8+2n-9=""=5(-1)^n-n++2=a_n"
(iii) Given "a_n=3(-1)^n+2^n-n+2." Prove
"a_{n-1}+2a_{n-2}+2n-9=""=-3(-1)^n+2^{n-1}-n+3+""+2\\cdot3(-1)^n+2^{1+n-2}-2n+8+2n-9=""=3(-1)^n+2^n-n+2=a_n"
(iv) Given "a_n=7\\cdot 2^n-n+2." Prove
"a_{n-1}+2a_{n-2}+2n-9=""=7\\cdot 2^{n-1}-n+3+""+2\\cdot7\\cdot 2^{n-2}-2n+8+2n-9=""=7\\cdot 2^n-n+2=a_n"
Comments
Leave a comment