1) By Fermat’s Little Theorem,
"3^{7-1}\\equiv1(\\bmod7)"
Then
"3^{12}\\equiv1(\\bmod7)," "3^{18}\\equiv1(\\bmod7)," "3^{24}\\equiv1(\\bmod7)," "3^{30}\\equiv1(\\bmod7)"
"3^{1}\\equiv3(\\bmod7)"
"3^{31}\\equiv3(\\bmod7)"
2) By Fermat’s Little Theorem,
"5^{59-1}\\equiv1(\\bmod59)"
Then "5^{116}\\equiv1(\\bmod59),"
"5^{3}\\equiv7(\\bmod59)"
"5^{119}\\equiv7(\\bmod59)"
3) By Fermat’s Little Theorem,
"2^{13-1}\\equiv1(\\bmod13), 3^{13-1}\\equiv1(\\bmod13)"
"2^{60}\\equiv1(\\bmod13), 3^{24}\\equiv1(\\bmod13)"
Then
"2^{70}+3^{30}\\equiv2^{10}+3^{6}\\equiv1024+729\\equiv"
"\\equiv114+79\\equiv193\\equiv11(\\bmod13)"
"2^{70}+3^{30}\\equiv11(\\bmod13)"
4) By Wilson's Theorem,
"(61-1)!\\equiv-1(\\bmod61)"
"(-1)(-2)(-3)(-4)(-5)(-6)(-7)53!\\equiv-1(\\bmod61)"
"53!(2)(3)(4)(5)(6)(7)\\equiv1(\\bmod61)"
"(2)(5)(6)=60"
"53!(-1)(3)(4)(7)\\equiv1(\\bmod61)"
"53!(3)(4)(7)\\equiv-1(\\bmod61)"
"(3)(4)(7)=84"
"53!(23)\\equiv-1(\\bmod61)"
Let's do Euclidean algorithm to compute "23^{-1}" "\\bmod61"
"61=2(23)+15"
"23=15+8"
"15=8+7"
"8=7+1"
Hence
"1=8-7=8-(15-8)=2(8)-15=2(23-15)-15="
"=2(23)-3(15)=2(23)-3(61-2(23))="
"=8(23)-3(61)"
"23^{-1}\\equiv8(\\bmod61)"
Hence
"53!\\equiv-8(\\bmod61)"
"53!\\equiv53(\\bmod61)"
5) 139 is the prime number. By Wilson's Theorem,
"(139-1)!\\equiv-1(\\bmod139)"
"(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)(-1)\\equiv"
"\\equiv(9)(8)(6)(5)(4)(3)(-1)\\equiv(9)(8)(3)(-19)(-1)\\equiv"
"\\equiv(27)(13)\\equiv73(\\bmod139)"
"149!\\equiv73(\\bmod139)"
6) By Fermat’s Little Theorem,
"x^{29-1}\\equiv1(\\bmod29)"
"86=3(28)+2"
"x^{86}\\equiv x^2(\\bmod29)"
Then
"x^{2}\\equiv 6(\\bmod29)"
"x^{2}\\equiv 64(\\bmod29)"
"x^{2}-64\\equiv 0(\\bmod29)"
"(x-8)(x+8)\\equiv (\\bmod29)"
"x\\equiv 8(\\bmod29)" or "x\\equiv 21(\\bmod29)"
Comments
Leave a comment