Evaluate kronecker symbol (11/24)
If "n=p_1...p_k," then "(\\dfrac{d}{n})=(\\dfrac{d}{p_1})...(\\dfrac{d}{p_2})"
"24=2\\cdot2\\cdot2\\cdot3"
"11\\equiv3(mod\\ 8)" Then "(\\dfrac{11}{2})=-1"
"d(\\dfrac{11}{3})" is the Legendre symbol: "d(\\dfrac{11}{3})=-1"
"=-1(-1)(-1)(-1)=1"
"d(\\dfrac{11}{24})=1"
Comments
Leave a comment