.Solve𝑥 ≡ 7(𝑚𝑜𝑑 11) 𝑥 ≡ 6(𝑚𝑜𝑑 8) 𝑥 ≡ 10(𝑚𝑜𝑑 15) Also find the
smallest non-negative solutions
Let us solve the following system of congruences:
"\\begin{cases}\nx\u22617 \\mod 11\\\\\nx\u22616\\mod 8\\\\\nx\u226110\\mod 15\n\\end{cases}."
The first congruence is equivalent to the equality "x=7+11t,\\ t\\in\\Z." Let us put this in the second conqruence. Then we have "7+11t\\equiv 6 \\mod 8." The last conqruence is equivalent to "11t\\equiv -1 \\mod 8," and hence to "(11-8)t\\equiv (16-1) \\mod 8," that is "3t\\equiv 15 \\mod 8." Since 3 and 8 are relatively prime, we conclude that "t\\equiv 5\\mod 8." It follows that "t=5+8s," and hence "x=7+11(5+8s)=62+88s." Let us put this in the last conqruence. Then we get "62+88s\u2261 10 \\mod 15," which is equivalent to "88s\u2261-52\\mod 15," and hence to "13s\u2261-52\\mod 15." It follows that "s\\equiv-4\\mod 15," and hence "s=-4+15k." We conclude that "x=62+88s=62+88(-4+15k)=-290+1320k."
Consequently, the solution of the system is "x\\equiv -290\\mod 1320" or "[-290]_{1320}."
The smallest non-negative solution is "-290+1320=1030."
Comments
Leave a comment