Prove or disprove: For all x ∈Z,if x mod11=5,then x 2 mod11=3.
Solution
Given that
"x" mod11 "= 5"
Then, for some value of "k", we can write x mod11= 5, as
"x = 11k + 5"
Then
"x^{2}=(11k+5)(11k+5)"
"x^{2}=121k^2+55k+55k+25"
"x^{2}=121k^2+110k+25"
Now,
"x^2" mod 11"=(121k^2+110k+25)" mod 11
"x^2" mod 11"=121 k^2" mod 11 + "110k" mod 11+ "25" mod 11
"x^2" mod 11"=0" + 0+ 3 because "25=2\\times11+3"
Therefore,
"x^2" mod 11 "= 3"
Comments
Leave a comment