Answer to Question #96789 in Combinatorics | Number Theory for Dina Patel

Question #96789
Let a = 3333333333^7777777777 (yes, there are ten digits ”3” and ten digits ”7”). If a is
written in decimal notation, what are the last two digits?
Hint: You need to compute a mod 100. Use Euler’s theorem and the fact that φ(100) = 40.
1
Expert's answer
2019-10-22T08:01:20-0400

Solution:


According the the Euler's theorem we

aφ(n) "\\equiv" 1 (mod n)

It is given the "\\phi"(100)= 40

aφ(100)  "\\equiv" 1 (mod 100)

a40 "\\equiv" 1(mod 100)


(3333333333)40 "\\equiv" 1(mod 100) ------- (1)



Now lets apply division algorithm on 7777777777 and 40


7777777777 = 40(194444444) + 17


Hence it follows

(3333333333)7777777777 "\\equiv" (333333333340) 194444444 x (3333333333)17

"\\equiv" (1)194444444 x (3333333333)17(mod 100)

"\\equiv" 3317

Now last two digits of

331 = 33

332 = 89

334 = 21

338 = 41

3316 = 81

So 3317 = 331 x 3316

"\\equiv" 33 x 81

"\\equiv" 73 is the last two digits of the 3317


Answer is 73


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS