Let's rewrite the function
"w(x+iy)=x+iy+e^{x+iy}=x+iy+e^x(\\cos y+i\\sin y)"
"u=Re(w)=x+e^x\\cos y"
"v=Im(w)=y+e^x\\sin y"
"\\frac{\\partial u}{\\partial x}=1+e^x\\cos y=\\frac{\\partial v}{\\partial y}"
"\\frac{\\partial u}{\\partial y}=-e^x\\sin y=-\\frac{\\partial v}{\\partial x}"
Therefore the function is analytic and
"w'=1+e^z"
Comments
Leave a comment