Answer to Question #116964 in Complex Analysis for Amoah Henry
2020-05-19T09:20:11-04:00
Given that w denotes either one of the non-real roots of the equation z3 = 1, show that
(a) 1 + w + w2 = 0, and (b) the other non-real root is w2. Show that the non-real roots of the equation
1 − u u
3 numbers, find A and B.
11. Given that 1, w, w2 are the cube roots of unity, find the equation whose roots are 1/3, 1/(2 + w), 1/(2 + w2).
can be expressed in the form Aw and Bw2, where A and B are real
1
2020-05-21T17:30:35-0400
a)
"z^3=1" "z^3-1=0" "(z-1)(z^2+z+1)=0" "z^2+ z+1=0"
"z={-1\\pm\\sqrt{1^2-4(1)^2}\\over2}={-1\\pm i\\sqrt{3}\\over2}" Cube Root of Unity Value
"w_1=1,\\ real"
"w_2={-1- i\\sqrt{3}\\over2}, complex"
"w_3={-1+ i\\sqrt{3}\\over2}, \\ complex" b)
"z^3-u^3=0" "z^3-u^3=(z-u)(z^2+u z+u^2)" Then
"(z-u)(z^2+u z+u^2)=0" "z^2+u z+u^2=0"
"z={-u\\pm\\sqrt{u^2-4u^2}\\over2}=u({-1\\pm i\\sqrt{3}\\over2})"
"z_1=u w_1=u\\cdot1=1\\cdot u+i\\cdot0, \\ real"
"z_2=u w_2=u\\cdot{-1- i\\sqrt{3}\\over2}=-{1\\over 2}u-i\\cdot{u\\sqrt{3}\\over 2},\\ complex"
"z_3=u w_3=u\\cdot{-1+ i\\sqrt{3}\\over2}=-{1\\over 2}u+i\\cdot{u\\sqrt{3}\\over 2},\\ complex" 11.
"w={-1- i\\sqrt{3}\\over2}=>2+w={3- i\\sqrt{3}\\over2}=>"
"=>{1\\over 2+w}={2\\over 3-i\\sqrt{3}}={2\\over 12}(3+i\\sqrt{3})={1\\over 6}(3+i\\sqrt{3})"
"w_2={-1+ i\\sqrt{3}\\over2}=>2+w_2={3+ i\\sqrt{3}\\over2}=>"
"=>{1\\over 2+w_2}={2\\over 3+i\\sqrt{3}}={2\\over 12}(3-i\\sqrt{3})={1\\over 6}(3-i\\sqrt{3})"
"(z-{1\\over 3})\\bigg(z-{1\\over 6}(3+i\\sqrt{3})\\bigg)\\bigg(z-{1\\over 6}(3-i\\sqrt{3})\\bigg)=0"
"(z-{1\\over 3})(z^2-z+{1\\over 3})=0"
"z^3-z^2+{1\\over 3}z-{1\\over 3}z^2+{1\\over 3}z-{1\\over 9}=0"
"z^3-{4\\over 3}z^2+{2\\over 3}z-{1\\over 9}=0" Or
"9z^3-12z^2+6z-1=0"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment