De Moivre’s Theorem:
"(\\cos \\theta +i \\sin \\theta )^n=\\cos n\\theta +i \\sin n\\theta, \\ \\" for all integers "n" .
a) "(\\cos\u03c0\/5+i\\sin\u2061\u03c0 \/5)^{10}=\\cos 2\\pi +i \\sin 2\\pi=1+i \\times 0=1"
b) "(\\cos\u2061\u03c0\/9+i\\sin\u2061\u03c0\/9)^{-3}=\n\\cos\n\u2061\n(\n\u2212\n\u03c0\n\/\n3\n)+i\n\\sin\n\u2061\n(\n\u2212\n\u03c0\n\/\n3\n)\n=\n1\/2+i (-\\sqrt 3 \/2)"
c) "(\\cos(\u2212\u03c0\/6)+i\\sin(\u2212\u03c0\/6)) \n^{\u22124}=\\cos 2\\pi \/3+i \\sin 2\\pi\/3=-1\/2+i \\sqrt 3 \/2"
Comments
Leave a comment