De Moivre's formula is "(cos(x)+i\\,sin(x))^n=(cos(nx)+i\\,sin(nx)),\\quad n\\in{\\mathbb{Z}}"
By applying it, we obtain:
(a) "(cos(\\frac{\\pi}{5})+i\\,sin(\\frac{\\pi}{5}))^{10}=cos(2\\pi)+i\\,sin(2\\pi)=1"
(b) "(cos(\\frac{\\pi}{9})+i\\,sin(\\frac{\\pi}{9}))^{-3}=cos(-\\frac{\\pi}{3})+i\\,sin(-\\frac{\\pi}{3})=\\frac{1}{2}-i\\,\\frac{\\sqrt{3}}{2}"
(c) "(cos(-\\frac{\\pi}{6})+i\\,sin(-\\frac{\\pi}{6}))^{-4}=cos(\\frac{2\\pi}{3})+i\\,sin(\\frac{2\\pi}{3})=-\\frac{1}{2}+i\\,\\frac{\\sqrt{3}}{2}"
Comments
Leave a comment