According to the De Moivre's Formula, all n-th roots of a complex number "r(\\cos(\\theta)+i\\sin(\\theta))"are given by "\\sqrt[n]{r}\\big(\\cos({\\theta+2\\pi k\\over n})+i\\sin({\\theta+2\\pi k\\over n})\\big)," "k=0,1,2,...,n-1"
We have that "r=6, \\theta=\\dfrac{\\pi}{3}, n=3."
"k=0:"
"z_1=\\sqrt[3]{6}\\big(\\cos({{\\pi\\over 3}+0\\over 3})+i\\sin({{\\pi\\over 3}+0\\over 3})\\big)=""=\\sqrt[3]{6}\\big(\\cos({\\pi\\over 9})+i\\sin({\\pi\\over 9})\\big)=""=\\sqrt[3]{6}\\cos({\\pi\\over 9})+i\\sqrt[3]{6}\\sin({\\pi\\over 9})""k=1:"
"z_2=\\sqrt[3]{6}\\big(\\cos({{\\pi\\over 3}+2\\pi\\over 3})+i\\sin({{\\pi\\over 3}+2\\pi\\over 3})\\big)=""=\\sqrt[3]{6}\\big(\\cos({7\\pi\\over 9})+i\\sin({7\\pi\\over 9})\\big)=""=-\\sqrt[3]{6}\\cos({2\\pi\\over 9})+i\\sqrt[3]{6}\\sin({2\\pi\\over 9})" "k=2:"
"z_3=\\sqrt[3]{6}\\big(\\cos({{\\pi\\over 3}+4\\pi\\over 3})+i\\sin({{\\pi\\over 3}+4\\pi\\over 3})\\big)=""=\\sqrt[3]{6}\\big(\\cos({13\\pi\\over 9})+i\\sin({13\\pi\\over 9})\\big)=""=-\\sqrt[3]{6}\\cos({4\\pi\\over 9})-i\\sqrt[3]{6}\\sin({4\\pi\\over 9})"
Comments
Leave a comment