Show that
a)z+z*=2 Re z=2x
b)z-z*=2i Im z=2iy
c)z/z*={x^2-y^2/x^2+y^2}+i{2xy/x^2+y^2}
"z=x+iy\\newline\nz^*=x-iy\\newline\na) z+z^*=x+iy+x-iy=2x\\newline\nb) z-z^*=x+iy-(x-iy)=2iy\\newline\nc) \\dfrac{z}{z^*}=\\dfrac{x+iy}{x-iy}=\\dfrac{(x+iy)*(x-iy)}{(x-iy)*(x-iy)}=\\dfrac{x^2+2ixy+y^2}{x^2-y^2}=\\dfrac{x^2+y^2}{x^2-y^2}+\\dfrac{2ixy}{x^2-y^2}"
Comments
Leave a comment