"\\displaystyle(a) \\\\\n\nz_1 = 1 + i\\sqrt{2}, z_2 = 1 - i\\sqrt{2}\\\\\n\n\n(i) \\\\\n\\textsf{Polar form of}\\, z_1 \\\\\n\n\\begin{aligned}\nr &= \\sqrt{1 + (\\sqrt{2})^2}\\\\\n&=\\sqrt{1 + 2} \\\\\n&= \\sqrt{3}\n\\end{aligned} \\\\\n\n\\begin{aligned}\n\\theta = \\arctan\\left(\\frac{\\sqrt{2}}{1}\\right) &= \\arctan(\\sqrt{2})\\\\\n&= 54.74\\degree\n\\end{aligned} \\\\\n\n\\therefore z_1 = \\sqrt{3}(\\cos(54.74\\degree) + i\\sin(54.74\\degree)) \\\\\n\n(ii)\\\\\n\\textsf{Polar form of}\\, z_2\\\\\n\n\\begin{aligned}\nr &= \\sqrt{1 + (\\sqrt{2})^2}\\\\\n&=\\sqrt{1 + 2} \\\\\n&= \\sqrt{3}\n\\end{aligned} \\\\\n\n\\textsf{Since}\\, \\theta\\,\\textsf{is in the fourth quadrant,}\\\\ \n\n\\begin{aligned}\n\\theta &=360\\degree - \\arctan\\left(\\frac{\\sqrt{2}}{1}\\right) \n\\\\&= 360\\degree - \\arctan(\\sqrt{2}) \n\\\\&= 360\\degree - 54.74\\degree\n\\\\&= 305.26\\degree\n\\end{aligned}\\\\\n\n\\therefore z_2 = \\sqrt{3}(\\cos(305.26\\degree) + i\\sin(305.26\\degree)) \\\\\n\n(iii)\\\\\\begin{aligned}\nz_1 \\cdot z_2 &= \\sqrt{3}(\\cos(54.74\\degree) + i\\sin(54.74\\degree)) \\\\&\\times \\sqrt{3}(\\cos(305.26\\degree) + i\\sin(305.26\\degree))\n\\\\&= 3(\\cos(54.74\\degree)\\cos(305.26\\degree) \\\\&+ i(\\cos(54.74\\degree)\\sin(305.26\\degree) + \\sin(54.74\\degree)\\cos(305.26\\degree)) \\\\&- \\sin(54.74\\degree)\\sin(305.26\\degree))\n\\end{aligned}\\\\\n\n\\begin{aligned}\n\\cos(305.26\\degree) &= \\cos(360\\degree - 54.74\\degree) = \\cos(54.74\\degree) \\\\\n\\sin(305.26\\degree) &= -\\sin(360\\degree - 54.74\\degree) = -\\sin(54.74\\degree) \n\\end{aligned}\\\\\n\n\n\\begin{aligned}\nz_1 \\cdot z_2 &= 3(\\cos(54.74\\degree)\\cos(54.74\\degree) \\\\&+ i(\\cos(54.74\\degree)\\cdot -\\sin(54.74\\degree) + \\sin(54.74\\degree)\\cos(54.74\\degree)) \\\\&- \\sin(54.74\\degree)\\cdot-\\sin(54.74\\degree))\n\\\\&= 3(\\cos^2(54.74\\degree) + \\sin^2(54.74\\degree)) = 3\\times 1 = 3\n\\end{aligned}\\\\\n\n(iv) \\\\\n\\begin{aligned}\n\\frac{z_1}{z_2} &= \\frac{\\sqrt{3}(\\cos(54.74\\degree) + i\\sin(54.74\\degree))}{\\sqrt{3}(\\cos(305.26\\degree) + i\\sin(305.26\\degree))}\n\\\\&= \\frac{(\\cos(54.74\\degree) + i\\sin(54.74\\degree))}{(\\cos(305.26\\degree) + i\\sin(305.26\\degree))} \\times \\frac{(\\cos(305.26\\degree) - i\\sin(305.26\\degree))}{(\\cos(305.26\\degree) - i\\sin(305.26\\degree))}\n\\\\&=\\frac{\\cos(54.74\\degree)\\cos(305.26\\degree)}{{(\\cos^2(305.26\\degree) + \\sin^2(305.26\\degree)}}+\\\\& \\frac{i(-\\cos(54.74\\degree)\\sin(305.26\\degree) + \\sin(54.74\\degree)\\cos(305.26\\degree))}{(\\cos^2(305.26\\degree) + \\sin^2(305.26\\degree)} \\\\&+ \\frac{\\sin(54.74\\degree)\\sin(305.26\\degree)}{(\\cos^2(305.26\\degree) + \\sin^2(305.26\\degree)}\n\\\\&=\\frac{\\cos^2(54.74\\degree) + i(\\cos(54.74\\degree)\\sin(54.74\\degree))}{1} \n\\\\&+ \\frac{\\sin(54.74\\degree)\\cos(54.74\\degree)) - \\sin^2(54.74\\degree)}{1} \n\\\\&= \\cos^2(54.74\\degree) - \\sin^2(54.74\\degree) + 2i(\\cos(54.74\\degree)\\sin(54.74\\degree)) \n\\\\&= \\cos^2(\\arctan(\\sqrt{2})) - \\sin^2(\\arctan(\\sqrt{2})) \\\\&\\hspace{4.5cm}+ 2i(\\cos(\\arctan(\\sqrt{2}))\\sin(\\arctan(\\sqrt{2})))\n\\end{aligned}\\\\\n\n\n\\textsf{Let}\\, y = \\cos(\\arctan(\\sqrt{x})), u = \\arctan(\\sqrt{x}) \\\\\n\ny = \\cos{u}, x = \\tan{u} \\\\\n\n1 + \\tan^2{u} = \\sec^2{u} \\implies \\cos{u} = \\frac{1}{\\sqrt{1 + \\tan^2{u}}}\\\\\n\n\\therefore y = \\cos(\\arctan(\\sqrt{x})) = \\frac{1}{\\sqrt{1 + \\tan^2{u}}}= \\frac{1}{\\sqrt{1 + x^2}}\\\\\n\n\\therefore \\cos^2(\\arctan(\\sqrt{2})) = \\frac{1}{1 + (\\sqrt{2})^2} = \\frac{1}{3} \\, \\& \\\\\n\\sin^2(\\arctan(\\sqrt{2})) = 1 - \\cos^2(\\arctan(\\sqrt{2})) = 1 - \\frac{1}{3} = \\frac{2}{3} \\\\\n\n\\begin{aligned}\n\\therefore \\frac{z_1}{z_2} &= \\frac{1}{3} - \\frac{2}{3} + 2i\\left(\\sqrt{\\frac{2}{3}\\cdot\\frac{1}{3}}\\right)\n\\\\&= -\\frac{1}{3} + i\\frac{2}{3}\\sqrt{2}\n\\end{aligned}"
Comments
Leave a comment