"\\textsf{Let us apply the transformation}\\, w = z \\\\\n\\textsf{to the shaded region}\\\\\n\n\\textsf{Then}\\, w = u + jv = x + jy \\\\\n\n\\therefore u = x, \\therefore v = y\\\\\n\n\n\\textsf{Now we map point}\\, B \\, \\textsf{onto}\\, B' \\\\\n\n(1) B: x = 0, y = 0, \\therefore B': u = 0, v = 0 \\\\\n\n\\textsf{We map the lines}\\, AB \\, \\textsf{and} \\, BC \\\\ \\textsf{onto}\\, A'B' \\, \\textsf{and} \\, B'C' \\, \\textsf{in the}\\, w\\textsf{-plane.}\\\\\n\n\n(a) AB: \\textsf{As} \\,x\\textsf{-decreases from} -\\infty \\, \\textsf{to}\\, 0, u\\textsf{-decreases from} \\, -\\infty\\, \\textsf{to}\\, 0. \\\\\n\n(b) BC: \\textsf{As}\\, x\\textsf{-increases from}\\, 0\\, \\textsf{to}\\, \\infty, u\\textsf{-increases from} \\, 0 \\, \\textsf{to}\\, \\infty. \\\\\n\n\\textsf{Finally, we can conclude that the shaded} \\\\\n\\textsf{region which is the upper half of the}\\\\\nz\\textsf{-plane maps onto to upper half of the}\\, w\\textsf{-plane.}"
Comments
Leave a comment