DX/x+y=dy/x+y=DX/-(x+y+2z)
Given, "\\dfrac{dx}{x+y}=\\dfrac{dy}{x+y}=\\dfrac{dx}{-(x+y+2z)}"
Taking first two terms-
"\\dfrac{dx}{x+y}=\\dfrac{dy}{x+y}"
"\\Rightarrow dx=dy"
Integrate-
"x=y+c_1"
"c_1=x-y~~~-(1)"
Taking first and last term we get-
"\\dfrac{dx}{x+y}=\\dfrac{dx}{-(x+y+2z)}\n\n\\\\[9pt]\n\n\\Rightarrow x+y=-x-y-2z\n\n\\\\[9pt]\n\n\\Rightarrow z=-(x+y)"
Now Taking second and third term-
"\\dfrac{dy}{x+y}=\\dfrac{dz}{-(x+y+2(-x-y)}\n\n\\\\[9pt]\n\n\\Rightarrow \\dfrac{dy}{x+y}=\\dfrac{dx}{x+y}\n\n\\\\[9pt]\n\n\\Rightarrow dy=dx"
Integrate-
"y=x+c_2\\\\[9pt]\n\n c_2=y-x~~~~~-(2)"
The solution is-
"\\phi(c_1,c_2)=0\n\n\\\\[9pt]\n\n\\phi(x-y,y-x)=0"
Comments
Leave a comment